Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38513841

RESUMO

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.

2.
J Pharmacol Exp Ther ; 388(2): 586-595, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37188530

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Lesão Pulmonar , Mecloretamina , Ratos , Masculino , Animais , Mecloretamina/toxicidade , Irritantes/efeitos adversos , Ratos Wistar , Pulmão , Fibrose , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Lesão Pulmonar/metabolismo , Estresse Oxidativo , Lipídeos
3.
iScience ; 26(12): 108567, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144454

RESUMO

Lipid membranes and lipid-rich organelles are targets of peroxynitrite (ONOO-), a highly reactive species generated under nitrative stress. We report a membrane-localized phospholipid (DPPC-TC-ONOO-) that allows the detection of ONOO- in diverse lipid environments: biomimetic vesicles, mammalian cell compartments, and within the lung lining. DPPC-TC-ONOO- and POPC self-assemble to membrane vesicles that fluorogenically and selectively respond to ONOO-. DPPC-TC-ONOO-, delivered through lipid nanoparticles, allowed for ONOO- detection in the endoplasmic reticulum upon cytokine-induced nitrative stress in live mammalian cells. It also responded to ONOO- within lung tissue murine models upon acute lung injury. We observed nitrative stress around bronchioles in precision cut lung slices exposed to nitrogen mustard and in pulmonary macrophages following intratracheal bleomycin challenge. Results showed that DPPC-TC-ONOO- functions specifically toward iNOS, a key enzyme modulating nitrative stress, and offers significant advantages over its hydrophilic analog in terms of localization and signal generation.

4.
Disaster Med Public Health Prep ; 17: e551, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37849329

RESUMO

Sulfur mustard (SM) is a threat to both civilian and military populations. Human skin is highly sensitive to SM, causing delayed erythema, edema, and inflammatory cell infiltration, followed by the appearance of large fluid-filled blisters. Skin wound repair is prolonged following blistering, which can result in impaired barrier function. Key to understanding the action of SM in the skin is the development of animal models that have a pathophysiology comparable to humans such that quantitative assessments of therapeutic drugs efficacy can be assessed. Two animal models, hairless guinea pigs and swine, are preferred to evaluate dermal products because their skin is morphologically similar to human skin. In these animal models, SM induces degradation of epidermal and dermal tissues but does not induce overt blistering, only microblistering. Mechanisms of wound healing are distinct in these animal models. Whereas a guinea pig heals by contraction, swine skin, like humans, heals by re-epithelialization. Mice, rats, and rabbits are also used for SM mechanistic studies. However, healing is also mediated by contraction; moreover, only microblistering is observed. Improvements in animal models are essential for the development of therapeutics to mitigate toxicity resulting from dermal exposure to SM.


Assuntos
Gás de Mostarda , Humanos , Camundongos , Ratos , Animais , Cobaias , Coelhos , Gás de Mostarda/toxicidade , Pele
5.
Disaster Med Public Health Prep ; 17: e553, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37848400

RESUMO

Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.


Assuntos
Lesão Pulmonar , Humanos , Inflamação , Irritantes/toxicidade , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Mostardeira , Fator de Necrose Tumoral alfa/metabolismo
6.
Toxicol Sci ; 194(1): 109-119, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37202362

RESUMO

Exposure to ozone causes decrements in pulmonary function, a response associated with alterations in lung lipids. Pulmonary lipid homeostasis is dependent on the activity of peroxisome proliferator activated receptor gamma (PPARγ), a nuclear receptor that regulates lipid uptake and catabolism by alveolar macrophages (AMs). Herein, we assessed the role of PPARγ in ozone-induced dyslipidemia and aberrant lung function in mice. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in a significant reduction in lung hysteresivity at 72 h post exposure; this correlated with increases in levels of total phospholipids, specifically cholesteryl esters, ceramides, phosphatidylcholines, phosphorylethanolamines, sphingomyelins, and di- and triacylglycerols in lung lining fluid. This was accompanied by a reduction in relative surfactant protein-B (SP-B) content, consistent with surfactant dysfunction. Administration of the PPARγ agonist, rosiglitazone (5 mg/kg/day, i.p.) reduced total lung lipids, increased relative amounts of SP-B, and normalized pulmonary function in ozone-exposed mice. This was associated with increases in lung macrophage expression of CD36, a scavenger receptor important in lipid uptake and a transcriptional target of PPARγ. These findings highlight the role of alveolar lipids as regulators of surfactant activity and pulmonary function following ozone exposure and suggest that targeting lipid uptake by lung macrophages may be an efficacious approach for treating altered respiratory mechanics.


Assuntos
Dislipidemias , Ozônio , Camundongos , Animais , PPAR gama/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Ozônio/toxicidade , Fosfolipídeos/metabolismo , Tensoativos , Dislipidemias/induzido quimicamente , Dislipidemias/metabolismo
7.
Part Fibre Toxicol ; 20(1): 16, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37088832

RESUMO

BACKGROUND: Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE: The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS: Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS: Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17ß-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS: These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.


Assuntos
Nylons , Pneumonia , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Nylons/toxicidade , Microplásticos , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Dilatação , Aerossóis e Gotículas Respiratórios , Pneumonia/induzido quimicamente , Pulmão , Inflamação/induzido quimicamente , Tamanho da Partícula , Líquido da Lavagem Broncoalveolar
8.
Toxicol Appl Pharmacol ; 466: 116455, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907382

RESUMO

It has been appreciated for decades that exposure to toxicants can induce injury and inflammation leading to multiple pathologies in many organ systems. However, recently the field has begun to recognize that toxicants can cause chronic pathologies and diseases by impairing processes known to promote the resolution of inflammation. This process is comprised of dynamic and active responses including pro-inflammatory mediator catabolism, dampening of downstream signaling, production of pro-resolving mediators, apoptosis, and efferocytosis of inflammatory cells. These pathways promote the return to local tissue homeostasis and prevent chronic inflammation that can lead to disease. The aim of this special issue was to identify and report on the potential hazards of toxicant exposure on the resolution of inflammation responses. Papers included in the issue also provide insights into biological mechanisms by which toxicants perturb these resolution processes and identify potential therapeutic targets.


Assuntos
Inflamação , Xenobióticos , Humanos , Inflamação/metabolismo , Fagocitose , Mediadores da Inflamação/metabolismo , Doença Crônica
9.
Toxicol Appl Pharmacol ; 461: 116388, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690086

RESUMO

Chlorine (Cl2) gas is a highly toxic and oxidizing irritant that causes life-threatening lung injuries. Herein, we investigated the impact of Cl2-induced injury and oxidative stress on lung macrophage phenotype and function. Spontaneously breathing male C57BL/6J mice were exposed to air or Cl2 (300 ppm, 25 min) in a whole-body exposure chamber. Bronchoalveolar lavage (BAL) fluid and cells, and lung tissue were collected 24 h later and analyzed for markers of injury, oxidative stress and macrophage activation. Exposure of mice to Cl2 resulted in increases in numbers of BAL cells and levels of IgM, total protein, and fibrinogen, indicating alveolar epithelial barrier dysfunction and inflammation. BAL levels of inflammatory proteins including surfactant protein (SP)-D, soluble receptor for glycation end product (sRAGE) and matrix metalloproteinase (MMP)-9 were also increased. Cl2 inhalation resulted in upregulation of phospho-histone H2A.X, a marker of double-strand DNA breaks in the bronchiolar epithelium and alveolar cells; oxidative stress proteins, heme oxygenase (HO)-1 and catalase were also upregulated. Flow cytometric analysis of BAL cells revealed increases in proinflammatory macrophages following Cl2 exposure, whereas numbers of resident and antiinflammatory macrophages were not altered. This was associated with increases in numbers of macrophages expressing cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS), markers of proinflammatory activation, with no effect on mannose receptor (MR) or Ym-1 expression, markers of antiinflammatory activation. Metabolic analysis of lung cells showed increases in glycolytic activity following Cl2 exposure in line with proinflammatory macrophage activation. Mechanistic understanding of Cl2-induced injury will be useful in the identification of efficacious countermeasures for mitigating morbidity and mortality of this highly toxic gas.


Assuntos
Cloro , Lesão Pulmonar , Camundongos , Masculino , Animais , Cloro/toxicidade , Camundongos Endogâmicos C57BL , Pulmão , Macrófagos , Líquido da Lavagem Broncoalveolar , Estresse Oxidativo , Metabolismo Energético
10.
Am J Physiol Lung Cell Mol Physiol ; 324(3): L345-L357, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36692165

RESUMO

E-cigarette consumption is under scrutiny by regulatory authorities due to concerns about product toxicity, lack of manufacturing standards, and increasing reports of e-cigarette- or vaping-associated acute lung injury. In vitro studies have demonstrated cytotoxicity, mitochondrial dysfunction, and oxidative stress induced by unflavored e-cigarette aerosols and flavoring additives. However, e-cigarette effects on the complex lung parenchyma remain unclear. Herein, the impact of e-cigarette condensates with or without menthol flavoring on functional, structural, and cellular responses was investigated using mouse precision cut lung slices (PCLS). PCLS were exposed to e-cigarette condensates prepared from aerosolized vehicle, nicotine, nicotine + menthol, and menthol e-fluids at doses from 50 to 500 mM. Doses were normalized to the glycerin content of vehicle. Video-microscopy of PCLS revealed impaired contractile responsiveness of airways to methacholine and dampened ciliary beating following exposure to menthol-containing condensates at concentrations greater than 300 mM. Following 500 mM menthol-containing condensate exposure, epithelial exfoliation in intrabronchial airways was identified in histological sections of PCLS. Measurement of lactate dehydrogenase release, mitochondrial water-soluble-tetrazolium salt-1 conversion, and glutathione content supported earlier findings of nicotine or nicotine + menthol e-cigarette-induced dose-dependent cytotoxicity and oxidative stress responses. Evaluation of PCLS metabolic activity revealed dose-related impairment of mitochondrial oxidative phosphorylation and glycolysis after exposure to menthol-containing condensates. Taken together, these data demonstrate prominent menthol-induced pulmonary toxicity and impairment of essential physiological functions in the lung, which warrants concerns about e-cigarette consumer safety and emphasizes the need for further investigations of molecular mechanisms of toxicity and menthol effects in an experimental model of disease.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Animais , Camundongos , Nicotina/toxicidade , Mentol/toxicidade , Aerossóis e Gotículas Respiratórios , Pulmão , Aromatizantes/toxicidade
11.
Toxicol Appl Pharmacol ; 460: 116359, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565939

RESUMO

Macrophage efferocytosis of apoptotic neutrophils (PMNs) plays a key role in the resolution of inflammation. In these studies, we describe a novel flow cytometric method to assess efferocytosis of apoptotic PMNs. Resident alveolar macrophages and PMNs were collected from lungs of mice exposed to inhaled ozone (0.8 ppm, 3 h) followed by lipopolysaccharide (3 mg/kg, i.v.) to induce acute lung injury. PMNs were labeled with PKH26 or DilC18(5)-DS (D12730) cell membrane dye and then incubated with resident alveolar macrophages at a ratio of 5:1. After 90 min, macrophage efferocytosis was analyzed by flow cytometry and confirmed by confocal microscopy. Whereas alveolar macrophages incubated with D12730-labeled PMNs could readily be identified as efferocytotic or non-efferocytotic, this was not possible with PKH26 labeled PMNs due to confounding macrophage autofluorescence. Using D12730 labeled PMNs, subsets of resident alveolar macrophages were identified with varying capacities to perform efferocytosis, which may be linked to the activation state of these cells. Future applications of this method will be useful in assessing the role of efferocytosis in the resolution of inflammation in response to toxicant exposure.


Assuntos
Macrófagos Alveolares , Neutrófilos , Camundongos , Animais , Neutrófilos/metabolismo , Macrófagos Alveolares/metabolismo , Citometria de Fluxo , Fagocitose , Inflamação/metabolismo , Apoptose
12.
Toxicol Appl Pharmacol ; 457: 116281, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36244437

RESUMO

Acute exposure to ozone causes oxidative stress, characterized by increases in nitric oxide (NO) and other reactive nitrogen species in the lung. NO has been shown to modify thiols generating S-nitrosothiols (SNOs); this results in altered protein function. In macrophages this can lead to changes in inflammatory activity which impact the resolution of inflammation. As SNO formation is dependent on the redox state of both the NO donor and the recipient thiol, the local microenvironment plays a key role in its regulation. This dictates not only the chemical feasibility of SNO formation but also mechanisms by which they may form. In these studies, we compared the ability of the SNO donors, ethyl nitrite (ENO), which targets both hydrophobic and hydrophilic thiols, SNO-propanamide (SNOPPM) which targets hydrophobic thiols, and S-nitroso-N-acetylcysteine. (SNAC) which targets hydrophilic thiols. to modify macrophage activation following ozone exposure. Mice were treated with air or ozone (0.8 ppm, 3 h) followed 1 h later by intranasal administration of ENO, SNOPPM or SNAC (1-500 µM) or appropriate controls. Mice were euthanized 48 h later. Each of the SNO donors reduced ozone-induced inflammation and modified the phenotype of macrophages both within the lung lining fluid and the tissue. ENO and SNOPPM were more effective than SNAC. These findings suggest that the hydrophobic SNO thiol pool targeted by SNOPPM and ENO plays a major role in regulating macrophage phenotype following ozone induced injury.

13.
Toxicol Appl Pharmacol ; 456: 116257, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174670

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis. Alveolar Type II cells are primarily responsible for surfactant production; they also play a key role in lung repair following injury. Herein, we assessed the effects of NM on Type II cell activity. Male Wistar rats were administered NM (0.125 mg/kg) or PBS control intratracheally. Type II cells, lung tissue and BAL were collected 3 d later. NM exposure resulted in double strand DNA breaks in Type II cells, as assessed by expression of γH2AX; this was associated with decreased expression of the DNA repair protein, PARP1. Expression of HO-1 was upregulated and nitrotyrosine residues were noted in Type II cells after NM exposure indicating oxidative stress. NM also caused alterations in Type II cell energy metabolism; thus, both glycolysis and oxidative phosphorylation were reduced; there was also a shift from a reliance on oxidative phosphorylation to glycolysis for ATP production. This was associated with increased expression of pro-apoptotic proteins activated caspase-3 and -9, and decreases in survival proteins, ß-catenin, Nur77, HMGB1 and SOCS2. Intracellular signaling molecules important in Type II cell activity including PI3K, Akt2, phospho-p38 MAPK and phospho-ERK were reduced after NM exposure. This was correlated with dysregulation of surfactant protein production and impaired pulmonary functioning. These data demonstrate that Type II cells are targets of NM-induced DNA damage and oxidative stress. Impaired functioning of these cells may contribute to pulmonary toxicity caused by mustards.


Assuntos
Lesão Pulmonar Aguda , Mecloretamina , Ratos , Masculino , Animais , Mecloretamina/toxicidade , Ratos Wistar , Lesão Pulmonar Aguda/induzido quimicamente , Células Epiteliais Alveolares , Estresse Oxidativo , Metabolismo Energético , Tensoativos/efeitos adversos
14.
Toxicol Appl Pharmacol ; 454: 116208, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35998709

RESUMO

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure. Wild-type (WT) and FXR-/- mice were treated intratracheally with PBS (control) or NM (0.08 mg/kg). Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 3, 14 and 28 d later. NM caused progressive histopathologic alterations in the lung including inflammatory cell infiltration and alveolar wall thickening and increases in protein and cells in BAL; oxidative stress was also noted, as reflected by upregulation of heme oxygenase-1. These changes were more prominent in male FXR-/- mice. Flow cytometric analysis revealed that loss of FXR resulted in increases in proinflammatory macrophages at 3 d post NM; this correlated with upregulation of COX-2 and ARL11, markers of macrophage activation. Markers of anti-inflammatory macrophage activation, CD163 and STAT6, were also upregulated after NM; this response was exacerbated in FXR-/- mice at 14 d post-NM. These findings demonstrate that FXR plays a role in limiting macrophage inflammatory responses important in lung injury and oxidative stress. Maintaining or enhancing FXR function may represent a useful strategy in the development of countermeasures to treat mustard lung toxicity.


Assuntos
Lesão Pulmonar Aguda , Mecloretamina , Lesão Pulmonar Aguda/patologia , Animais , Ciclo-Oxigenase 2/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Irritantes/toxicidade , Lipídeos , Pulmão , Ativação de Macrófagos , Masculino , Mecloretamina/toxicidade , Camundongos
15.
Exp Mol Pathol ; 128: 104807, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35798063

RESUMO

Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a highly reactive bifunctional alkylating agent synthesized for chemical warfare. The eyes are particularly sensitive to SM where it causes irritation, pain, photophobia, and blepharitis, depending on the dose and duration of exposure. In these studies, we examined the effects of SM vapor on the corneas of New Zealand white male rabbits. Edema and hazing of the cornea, signs of acute injury, were observed within one day of exposure to SM, followed by neovascularization, a sign of chronic or late phase pathology, which persisted for at least 28 days. Significant epithelial-stromal separation ranging from ~8-17% of the epithelial surface was observed. In the stroma, there was a marked increase in CD45+ leukocytes and a decrease of keratocytes, along with areas of disorganization of collagen fibers. SM also disrupted the corneal basement membrane and altered the expression of perlecan, a heparan sulfate proteoglycan, and cellular fibronectin, an extracellular matrix glycoprotein. This was associated with an increase in basement membrane matrix metalloproteinases including ADAM17, which is important in remodeling of the basement membrane during wound healing. Tenascin-C, an extracellular matrix glycoprotein, was also upregulated in the stroma 14-28 d post SM, a finding consistent with its role in organizing structural components of the stroma necessary for corneal transparency. These data demonstrate that SM vapor causes persistent alterations in structural components of the cornea. Further characterization of SM-induced injury in rabbit cornea will be useful for the identification of targets for the development of ocular countermeasures.


Assuntos
Lesões da Córnea , Gás de Mostarda , Masculino , Coelhos , Animais , Gás de Mostarda/toxicidade , Proteoglicanas de Heparan Sulfato/metabolismo , Tenascina/metabolismo , Fibronectinas/metabolismo , Lesões da Córnea/induzido quimicamente , Lesões da Córnea/metabolismo , Membrana Basal/metabolismo , Membrana Basal/patologia , Matriz Extracelular/metabolismo , Alquilantes , Sulfetos/metabolismo , Colágeno/metabolismo
16.
Chem Res Toxicol ; 35(4): 636-650, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35312310

RESUMO

Cytotoxic blistering agents such as sulfur mustard and nitrogen mustard (HN2) were synthesized for chemical warfare. Toxicity is due to reactive chloroethyl side chains that modify and damage cellular macromolecules including DNA and proteins. In response to DNA damage, cells initiate a DNA damage response directed at the recruitment and activation of repair-related proteins. A central mediator of the DNA damage response is p53, a protein that plays a critical role in regulating DNA repair. We found that HN2 causes cytosolic and nuclear accumulation of p53 in HaCaT keratinocytes; HN2 also induced post-translational modifications on p53 including S15 phosphorylation and K382 acetylation, which enhance p53 stability, promote DNA repair, and mediate cellular metabolic responses to stress. HN2 also cross-linked p53, forming dimers and high-molecular-weight protein complexes in the cells. Cross-linked multimers were also modified by K48-linked ubiquitination indicating that they are targets for proteasome degradation. HN2-induced modifications transiently suppressed the transcriptional activity of p53. Using recombinant human p53, HN2 alkylation was found to be concentration- and redox status-dependent. Dithiothreitol-reduced protein was more efficiently cross-linked indicating that p53 cysteine residues play a key role in protein modification. LC-MS/MS analysis revealed that HN2 directly alkylated p53 at C124, C135, C141, C176, C182, C275, C277, H115, H178, K132, and K139, forming both monoadducts and cross-links. The formation of intermolecular complexes was a consequence of HN2 cross-linked cysteine residues between two molecules of p53. Together, these data demonstrate that p53 is a molecular target for mustard vesicants. Modification of p53 likely mediates cellular responses to HN2 including DNA repair and cell survival contributing to vesicant-induced cytotoxicity.


Assuntos
Mecloretamina , Proteína Supressora de Tumor p53 , Cromatografia Líquida , Cisteína , Humanos , Queratinócitos , Mecloretamina/química , Espectrometria de Massas em Tandem
17.
Toxicol Sci ; 187(1): 162-174, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35201360

RESUMO

Ozone is a ubiquitous air pollutant that causes lung damage and altered functioning. Evidence suggests that proinflammatory macrophages contribute to ozone toxicity. Herein, we analyzed the role of extracellular vesicles (EVs) and microRNA (miRNA) cargo in ozone-induced macrophage activation. Exposure of mice to ozone (0.8 ppm, 3 h) resulted in increases in bronchoalveolar lavage fluid EVs, which were comprised predominantly of microvesicles (MVs). NanoFACS analysis revealed that MVs generated following both air and ozone exposure was largely from CD45+ myeloid cells; these MVs were readily taken up by macrophages. Functionally, MVs from ozone, but not air treated mice, upregulated mRNA expression of inflammatory proteins in macrophages including inducible nitric oxide synthase (iNOS), CXCL-1, CXCL-2, and interleukin (IL)-1ß. The miRNA profile of MVs in bronchoalveolar lavage fluid (BALF) was altered after ozone exposure; thus, increases in miR-21, miR-145, miR320a, miR-155, let-7b, miR744, miR181, miR-17, miR-92a, and miR-199a-3p were observed, whereas miR-24-3p and miR-20 were reduced. Ingenuity pathway analysis revealed that these miRNAs regulate pathways that promote inflammatory macrophage activation, and predicted that let-7a-5p/let-7b, miR-24-3p, miR-21-5p, miR-17, and miR-181a-5p are key upstream regulators of inflammatory proteins. After ozone exposure, miR-199a-3p, but not precursor miR-199a-3p, was increased in lung macrophages, indicating that it is derived from MV-mediated delivery. Furthermore, lung macrophage mRNA expression of IL-1ß was upregulated after administration of MVs containing miR-199a-3p mimic but downregulated by miR-199a-3p inhibitor. Collectively, these data suggest that MVs generated following ozone exposure contribute to proinflammatory macrophage activation via MV-derived miRNAs including miR-199a-3p. These findings identify a novel pathway regulating macrophage inflammatory responses to inhaled ozone.


Assuntos
MicroRNAs , Ozônio , Animais , Pulmão/metabolismo , Ativação de Macrófagos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Ozônio/toxicidade , RNA Mensageiro/metabolismo
18.
Toxicol Appl Pharmacol ; 428: 115677, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34390737

RESUMO

Sulfur mustard (SM) is a bifunctional alkylating agent that causes severe injury to the respiratory tract. This is accompanied by an accumulation of macrophages in the lung and the release of the proinflammatory cytokine, tumor necrosis factor (TNF)α. In these studies, we analyzed the effects of blocking TNFα on lung injury, inflammation and oxidative stress induced by inhaled SM. Rats were treated with SM vapor (0.4 mg/kg) or air control by intratracheal inhalation. This was followed 15-30 min later by anti-TNFα antibody (15mg/kg, i.v.) or PBS control. Animals were euthanized 3 days later. Anti-TNFα antibody was found to blunt SM-induced peribronchial edema, perivascular inflammation and alveolar plasma protein and inflammatory cell accumulation in the lung; this was associated with reduced expression of PCNA in histologic sections and decreases in BAL levels of fibrinogen. SM-induced increases in inflammatory proteins including soluble receptor for glycation end products, its ligand, high mobility group box-1, and matrix metalloproteinase-9 were also reduced by anti-TNFα antibody administration, along with increases in numbers of lung macrophages expressing TNFα, cyclooxygenase-2 and inducible nitric oxide synthase. This was correlated with reduced oxidative stress as measured by expression of heme oxygenase-1 and Ym-1. Together, these data suggest that inhibiting TNFα may represent an efficacious approach to mitigating acute lung injury, inflammatory macrophage activation, and oxidative stress induced by inhaled sulfur mustard.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Gás de Mostarda/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Lesão Pulmonar Aguda/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Substâncias para a Guerra Química/toxicidade , Exposição por Inalação/efeitos adversos , Masculino , Gás de Mostarda/administração & dosagem , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
19.
Exp Mol Pathol ; 121: 104656, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34081961

RESUMO

Sulfur mustard (SM; bis (2-chloroethyl) sulfide) is a potent vesicant which causes irritation of the conjunctiva and damage to the cornea. In the present studies, we characterized the ocular effects of SM in New Zealand white rabbits. Within one day of exposure to SM, edema and hazing of the cornea were observed, followed by neovascularization which persisted for at least 28 days. This was associated with upper and lower eyelid edema and conjunctival inflammation. The conjunctiva is composed of a proliferating epithelium largely consisting of stratified columnar epithelial cells overlying a well-defined dermis. Superficial layers of the conjunctival epithelium were found to express keratin 1, a marker of differentiating squamous epithelium, while in cells overlying the basement membrane expressed keratin 17, a marker of stratified squamous epithelium. SM exposure upregulated keratin 17 expression. Mucin 5 ac producing goblet cells were interspersed within the conjunctiva. These cells generated both acidic and neutral mucins. Increased numbers of goblet cells producing neutral mucins were evident after SM exposure; upregulation of expression of membrane-associated mucin 1 and mucin 4 in the superficial layers of the conjunctival epithelium were also noted. These data demonstrate that ocular exposure of rabbits to SM causes significant damage not only to the cornea, but to the eyelid and conjunctiva, suggesting multiple targets within the eye that should be assessed when evaluating the efficacy of potential countermeasures.


Assuntos
Substâncias para a Guerra Química/toxicidade , Túnica Conjuntiva/patologia , Córnea/patologia , Epitélio/patologia , Células Caliciformes/patologia , Gás de Mostarda/toxicidade , Animais , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Córnea/efeitos dos fármacos , Córnea/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Masculino , Mucina-1/metabolismo , Mucina-4/metabolismo , Coelhos
20.
Toxicol Appl Pharmacol ; 423: 115569, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33971176

RESUMO

Activated macrophages have been implicated in lung injury and fibrosis induced by the cytotoxic alkylating agent, nitrogen mustard (NM). Herein, we determined if macrophage activation is associated with histone modifications and altered miRNA expression. Treatment of rats with NM (0.125 mg/kg, i.t.) resulted in increases in phosphorylation of H2A.X in lung macrophages at 1 d and 3 d post-exposure. This DNA damage response was accompanied by methylation of histone (H) 3 lysine (K) 4 and acetylation of H3K9, marks of transcriptional activation, and methylation of H3K36 and H3K9, marks associated with transcriptional repression. Increases in histone acetyl transferase and histone deacetylase were also observed in macrophages 1 d and 28 d post-NM exposure. PCR array analysis of miRNAs (miR)s involved in inflammation and fibrosis revealed unique and overlapping expression profiles in macrophages isolated 1, 3, 7, and 28 d post-NM. An IPA Core Analysis of predicted mRNA targets of differentially expressed miRNAs identified significant enrichment of Diseases and Functions related to cell cycle arrest, apoptosis, cell movement, cell adhesion, lipid metabolism, and inflammation 1 d and 28 d post NM. miRNA-mRNA interaction network analysis revealed highly connected miRNAs representing key upstream regulators of mRNAs involved in significantly enriched pathways including miR-34c-5p and miR-27a-3p at 1 d post NM and miR-125b-5p, miR-16-5p, miR-30c-5p, miR-19b-3p and miR-148b-3p at 28 d post NM. Collectively, these data show that NM promotes histone remodeling and alterations in miRNA expression linked to lung macrophage responses during inflammatory injury and fibrosis.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Histonas/biossíntese , Ativação de Macrófagos/efeitos dos fármacos , Mecloretamina/toxicidade , MicroRNAs/biossíntese , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Animais , Expressão Gênica , Histonas/genética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , MicroRNAs/genética , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...